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Conventional wisdom holds that a finite reverberant system with chaotic ray trajectories will have, at
high frequencies, eigenvalue statistics identical to those of the Gaussian orthogonal ensemble (GOE) of
random matrices. It also holds that a nonchaotic system will have simple Poissonian statistics. Recent
experiments on the eigenvalues of elastic blocks with angled cuts and recent calculations of the eigenfre-
quencies of membranes with staircaselike jagged boundaries and the eigenfrequencies of a rectangular
domain with a single isotropic point scatterer have, however, found GOE statistics even in these pseu-
dointegrable systems—even though all rays in such systems are nonchaotic. In this work, the rectangu-
lar domain with a single isotropic point scatterer is studied further. In contrast to recent related work,
the scatterer is characterized here by its ¢ matrix and scattering cross section. It is shown that the long-
range level repulsion in this system is not in precise accord with the predictions of the GOE, nor is the
long-range spectral rigidity. GOE does, though, correctly describe the short-range statistics. A quanti-
tative prediction for the range in which GOE applies is advanced based upon the lifetime of a ray against
mixing—i.e., based upon the scattering cross section of the scatterer. This prediction is corroborated by
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numerical calculations of the eigenfrequencies.

PACS number(s): 05.45.+b, 03.65. —w, 03.40.Kf, 43.40.+s

I. INTRODUCTION

There is substantial modern literature existent on a
subject loosely termed “quantum chaos” [1-3], regarding
issues related to the correspondence between classical
mechanics of particles with ergodic dynamics and quan-
tum mechanics in the limit of a small Planck constant.
That this correspondence, which is much like the high-
frequency correspondence between ray acoustics and
eigenmode acoustics, is unclear has long been appreciated
(see, for example, Gutzwiller’s discussion in [1]). There is
nevertheless a general consensus that a finite time rever-
sal invariant system with chaotic ray trajectories will
have, at high frequencies, eigenvalue statistics identical to
those of the Gaussian orthogonal ensemble (GOE) of ran-
dom matrices [4,5] and that these statistics are the sign in
the quantum spectrum of the underlying chaotic classical
mechanics. It is furthermore believed that systems whose
classical ray mechanics is nonchaotic will have high-
frequency spectra with simple Poissonian statistics.

The first of these beliefs is well supported by an impres-
sive array of numerical experiments [6—8] evaluating the
eigenspectra of so-called ‘billiard problems.” Billiards
have classical ray trajectories that reflect specularly from
the walls. The associated eigenproblem concerns the
eigenfrequencies of the billiard shape with reflecting
boundary conditions, e.g., Dirichlet. As for most shapes
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presenting focusing or defocusing boundaries, the Sinai
billiard and the Bunimovich stadium have ray trajectories
that are almost all chaotic. The spectral statistics of
these systems have been found to correspond, with a high
degree of confidence, to those of the spectrum of the
GOE [4,5]. There are also laboratory confirmations of
the correspondence, carried out on the vibrational eigen-
frequencies of stadium-shaped plates and the microwave
eigenfrequencies of stadium-shaped cavities [9].

The second of the beliefs is, however, much less well
supported. The belief has been clearly stated: ‘“When the
geometrical acoustics limit does not correspond to a
chaotic motion, but rather to a regular one with nearby
trajectories diverging at most as a power law of time, one
expects that the corresponding spectrum is not predicted
by the GOE but is rather Poissonian” [10]. That rec-
tangular, circular, and elliptical [8,11] billiards have Pois-
sonian statistics is well appreciated. There are, however,
certain classical ray systems that, while nonintegrable,
nevertheless have regular nonchaotic ray dynamics. Nu-
merical [12-15] and laboratory evidence [16], however,
suggests that these systems have eigenstatistics like those
of the GOE. How then are we to understand the nature
of the correspondence? What aspects of the classical dy-
namics lead to GOE statistics? In the next section we
briefly review the evidence for GOE-like statistics in
these regular systems and advance, on physical grounds,
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a hypothesis that accounts for the statistics of these sys-
tems. The hypothesis predicts the range over which
GOE statistics should and should not apply. The subse-
quent sections examine the simple and numerically tract-
able case of a point scatterer in a rectangular membrane
and show that its statistics, when analyzed more closely,
are not precisely those of the GOE, but do conform to
the predictions of the hypothesis.

II. EVIDENCE FOR GOE-LIKE STATISTICS
IN CLASSICALLY REGULAR SYSTEMS

Our interest in this question began some years ago
when one of us [16] showed that the statistics of the mea-
sured elastodynamic eigenfrequencies of aluminum
blocks corresponded to those of the GOE. The nominal-
ly rectangular blocks used in that study had slits cut in
them to eliminate the reflection symmetries, but they had
no explicit focusing or defocusing boundaries. Thus ray
trajectories in these blocks were nonchaotic. From the
point of view of the second belief above, the appearance
of the GOE statistics was therefore puzzling [10]. This
belief in the correspondence of regular ray trajectories
with Poissonian statistics is mostly based upon experience
with the scalar wave equation. It might be that vector
elastodynamic systems such as those of the blocks are
sufficiently different from the scalar systems that they do
not conform to the conventional understanding. That
possibility was discussed and discounted in Ref. [10]. In-
stead it was suggested there that what is relevant is the
amount of chaos present in the classical motion at the
scale of the wavelength. It was further asserted that for
much higher frequencies such that wavelengths are of the
order of the slit width one must recover regular ray tra-
jectories and Poissonian statistics.

Similar behavior was observed in a numerical study
[14] of a rectangular billiard, of size L, with a large num-
ber of small rectangular pieces, of size I, removed from
the edges. As the size of the pieces / —0 the number of
pieces went to infinity in such a way that the system
resembled, in that limit, a smooth boundaried Sinai bil-
liard. At nonzero [ the classical ray trajectories are regu-
lar and conventional wisdom would predict Poissonian
eigenstatistics. Nevertheless, the numerically determined
eigenfrequencies of the membrane were found to obey
GOE statistics as long as the wavelength was greater
than /. As hypothesized there, and in Ref. [9] in regard
to the elastodynamic system, the wave is presumably not
sensitive to the exact shape of the billiard, but rather to
its shape on a spatial scale with limited resolution compa-
rable to a wavelength.

In a pair of papers Seba [12] and Albeverio and Seba
[13] argue against this hypothesis. They discuss the
statistics of the eigenfrequencies of a rectangular mem-
brane with an isotropic point scatterer, usually placed at
the exact center. Almost all ray trajectories in this sys-
tem are nonchaotic; only the rare ray that exactly strikes
the scatterer will be aware that the system is other than a
simple rectangle. It was nevertheless proved that the lev-
el spacing distribution exhibits level repulsion. Seba’s nu-
merically determined level spacing distribution appeared
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to agree with the predictions of the GOE. In Seba’s sys-
tem there is no length scale to which the wavelength may
be compared. There is thus no possibility of recovering
Poissonian statistics at high frequencies; the above hy-
pothesis cannot explain Seba’s results. Later Shigehara
[15] confirmed Seba’s conclusions and demonstrated that
Poisson-like statistics are regained if the scatterer is in
some sense weak.

It is conjectured here that the GOE character of the
statistics observed in the aluminum blocks [16] and in the
staircase edged membranes [14] is related to the GOE
character observed by Seba and is not due to a finite ratio
of wavelength to some other relevant length scale, such
as stair size or slit width. It would instead be due to
scattering or diffraction at the pointlike edges and
corners, analogous to the isotropic point scattering in the
systems studied by Seba and co-workers [12,13] and Shi-
gehara [15]. One consequence of this conjecture is that
the statistics in the aluminum block and in the staircase
edged membrane would retain apparent GOE statistics
even in the high-frequency limit, regardless of the ratio of
wavelength to any structural length scales.

Modal repulsion, and, in general, spectral correlations,
between different modes is understood to occur when the
modes or the associated ray trajectories in some sense oc-
cupy the same region in phase space. For this reason
classically chaotic systems, any ray of which occupies all
of the phase space, are understood to have fully
developed GOE eigenstatistics. Such arguments, howev-
er, cannot be quite correct. Different modes have
different eigenfrequencies; they thus occupy different en-
ergy shells in phase space. They do not occupy the same
volumes in phase space. This counterargument has a
significant flaw whose analysis, we believe, sheds light on
the GOE character of the eigenstatistics in the systems
discussed above. The flaw lies in the supposition that the
energy, or frequency, can be specified with arbitrary pre-
cision. The uncertainty principle tells us, however, that
the frequency must be imprecise to within an amount Aw
after a time T =27 /Ao.

Thus it is also important to ask how rapidly phase
space is filled. One imagines that ray trajectories spread
over an energy shell in phase space while the thickness of
that shell simultaneously shrinks. In a classically chaotic
system the rays fill the shell rapidly, long before
significant thickness reduction has taken place; thus the
phase volumes of neighboring modes overlap significantly
and spectral correlations result. Two modes, separated
by a frequency difference Aw, are therefore correlated
only if they explore the same region of phase space and
do so within the allotted time. This is the reason that un-
stable orbits can scar the eigenstates of classically chaotic
systems. The orbits may be unstable, but their Lyapunov
exponents are weak in some sense compared to the modal
spacings [17]. In his discussion of scarring, Heller [6] has
emphasized the importance of a quantity he calls the
break time, defined as the time necessary to resolve two
modes separated by an average level spacing 7=2mp,
where p is the level density: ‘“While a ray system has an
infinite amount of time to develop, the corresponding
wave system is given only a finite time; thus eigenstates
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can be expected to be less globally distributed than the
infinite time average of a classical trajectory” [6]. It may
be noted that Shudo and Shimizu [18] also discussed the
rate at which a single ray trajectory fills phase space in
their rhombus-shaped billiard.

From this perspective we see that classical chaos is not
the sine qua non for spectral correlations. Indeed, we see
that spectra correlations over a range Aw should be ex-
pected whenever ray trajectories fill their phase space
shells within a time 27 /Aw. This may occur even in sys-
tems with regular trajectories. The weak level density
fluctuations associated with periodic orbits of chaotic sys-
tems is a special case of the hypothesized limit of applica-
bility of the GOE. The nonuniversal behavior of the
eigenstatistics over these ranges is related to the finite
time for the rays, even in a chaotic system, to ergodically
fill phase space shells.

We thus suppose that eigenstatistics in systems such as
that discussed by Seba and co-workers [12,13], Shigehara
[15], Cheon and Cohen [14], Weaver [16], and Shudo and
Shimizu [18] are correlated over ranges Aw=1/T, where
T is the time for a typical packet of energy to spread over
phase space. This happens only after it scatters from
Seba’s point scatterer or diffracts from a sharp corner.
We furthermore suppose that the eigenstatistics are un-
correlated over longer ranges. If o represents the total
scattering cross section in the system of area A, a typical
ray will scatter after a time of the order of 4 /(oc) equal
to, if the rays mix well in real space, the mean free ray
time in a two-dimensional geometry. Thus one expects
correlations over ranges Aw less than or equal to (oc)/ 4.
But 8w, the mean level spacing, is cA/ A. Expressed non-
dimensionally therefore, the correlation range will be
o /A. In Seba’s system one can assign a scattering cross
section o to the point scatterer that is of the order of the
wavelength A. This is the quantitative formulation of our
proposal that, however small the wavelength is, the
scattering cross section due to diffraction shrinks to zero
with the wavelength at the same rate when one goes to
the geometrical regime. As a consequence, the effect of
the scatterer remains of the same relative strength at all
frequencies, in agreement with our hypothesis. Thus one
expects correlation ranges in his systems to extend only
over about one mean level spacing. Seba did not publish
data on long range correlations, but one can argue (see
below) that his system must have very little spectra rigidi-
ty. One can also barely detect a failure of GOE predic-
tions at longer ranges in his plots of the nearest-neighbor
level spacing distribution. Shigehara [15] did publish
data on long-range spectral rigidity that did show the
failure of GOE statistics at these ranges. Similarly Shudo
and Shimizu [18] showed, in their study of a rhombus bil-
liard, that the failure of GOE statistics is confined to the
longer ranges. This is precisely what the present hy-
pothesis predicts: GOE statistics are failing over nondi-
mensional ranges of the order or greater than o /A.

The remainder of this paper is devoted to a further
study of the system introduced by Seba consisting of a
point scatterer in a rectangular domain. We particularly
wish to confirm whether, as is predicted by the present
hypothesis, the apparent GOE statistics fail at longer
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ranges. Section III derives an analytic expression whose
roots determine the eigenfrequencies of the system and is
readily evaluated numerically. The statistics of those
eigenfrequencies are presented in Sec. V.

Shigehara [15] has recently studied a similar system,
with an emphasis on a mathematical calculation of the
strength of the scatterer (which poses problems in two di-
mensions [18]). In that work, the physical meaning of the
strength of the scatterer remained elusive and there was
no connection drawn between the scatterer strength and
the scattering cross section. In the present paper the
physical meaning of the scatterer strength follows
straightforwardly from a formulation in terms of the fa-
miliar and natural ¢ matrix; a consequent interpretation
in terms of a cross section is then simple. This formula-
tion also obviates the diverging sums and associated ul-
traviolet cutoffs that obscured Shigehara’s main points.
The consequent simplicity also allows what we think is a
better control of the precision of the calculations. Final-
ly, as above, the connection with scattering cross section
allows us to propose a clear physical criterion for the ap-
pearance of spectral rigidity in terms of the time needed
for a wave packet to explore its phase space. An impor-
tant prediction is that the range of spectral rigidity
should increase with the number of scatterers. Interest-
ingly, Shigehara reports preliminary results that indicate
that the GOE correspondence increases with the number
of scatterers.

III. ANALYSIS OF THE RECTANGULAR
DOMAIN WITH POINT SCATTERER

The eigenvalue problem for the reduced wave equation
in a reverberant system with a point scatterer is readily
formulated in terms of the eigenfunctions of the same
domain without the scatterer and in terms of the operator
that describes the point scatterer in an unbounded
domain. One advantage of such a formulation is that it is
straightforward and familiar and its physical meaning is
unambiguous and natural. In this section we present that
procedure.

The bare rectangular domain 0<x<L,, O<y<L,
with Dirichlet boundary conditions and unit wave speed
has a Green’s function that satisfies the inhomogeneous
Helmholtz equation

[m2+V2]G0(r,r’;a))=82(r—r') s
Gy(rEboundary, r';0)=0. (1)

The normal modes ¢,,,(x,y)=4¢,,,(r) of the homogene-
ous equation
V2 (1) = — 02, $pm (1), S(rEboundary)=0
are
¢pm =(4/L, L) ?sin(nmx /L, )sin(mmy /L) , -
co,lm=(n27'r2/L,f+m2'rr2/Ly2)1/2 .

The Green’s function may be written in terms of the nor-
mal modes
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Gy(r,r';0+1€)

=3 bun (Db (1) [0+ —0}, ], ()

where the sum is over all positive n and m and where it
has been realized that G is well defined only if o is in the
upper half complex plane. In the remainder of this paper
¢ will be understood to be infinitesimal and positive.

The Green’s function for an unbounded domain is the
outgoing Hankel function

G®(r,r;0)=—(i/$)H'(|R|w) , @)

where R is the vector connecting source and receiver
R=r—r'. A point scatterer in any dimension equal to or
greater than 2 cannot be represented in terms of a
scattering potential [19]. Therefore Seba defined his
point scatterer [12] by means of a complicated limiting
process on a small disk of vanishing radius. Shigehara
defined his by means of a “bare coupling constant” whose
physical meaning was not clear. One may, however,
define a physical scattering operator without reference to
any microphysics by defining it as the ratio of the
strength of the incident field at the scatterer to the
strength of the outgoing field in the vicinity of the
scatterer. This is the standard definition for the
scatterer’s ¢ matrix in an unbounded medium. The
scatterer’s cross section is closely related to its ¢ matrix.
This strategy has been used previously to formulate gen-
eral time-dependent wave equations in terms of scattering
matrices in the time domain [20]. Here we shall restrict
the discussion to the simpler and more familiar case of a
scattering matrix in the frequency domain. The advan-
tage of such a formulation is that its physical meaning is
unambiguous and natural and the formalism is straight-
forward and well known. We therefore consider the case
of an infinite domain with an isotropic point scatterer at
position b. The field in the vicinity of the scatterer is
then given by, in the absence of sources near the scatter-
er, the sum of an incident field and a scattered field

,‘/} — ¢incident + lpscattered . (5)

The incident field is regular at b and is thus, to leading
order in the distance from the scatterer,

1/}incident( r)= ,lpincident(b )JO((D | r— b] ). 6)

The scattered field is outgoing, isotropic, and a linear
function of the incident field evaluated at the position of
the scatterer. It is thus of the form

¢scattered(r)=( —i/4)H{)l)( |r—b|w)t(ﬂ))
X ¢incident(b) s 7

where the complex number ?(w) represents the scalar
transition strength of the isotropic point scatterer. More
complicated scatterers are often represented by a T ma-
trix that gives the coefficients of a multipole outgoing
field in terms of the coefficients of a multipole incident
field [21].

The incident field may be decomposed in terms of in-
coming and outgoing waves
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Wncident(r)= l/!inddem(b).fo(a) |l'_bl )
— ¢incidem( b)
XL HP (olr—b)+H{ (o[r—b])] . (8)

Substituting (8) and (7) into (5), one finds that the total
field is representable as a sum of incoming and outgoing
waves

¢=lpincident(b)[_;_HE)Z)(wlr_b|)
+{1—it/4)HP (wlr—b])], 9

€69

the ratio of whose coefficients is the ‘“scattering” or *s
matrix. Energy conservation requires that incoming and
outgoing powers be equal

|L2=|L—it/4|* . (10)
This implies an optical theorem

|t|>*=—4 Imt¢ (11
or

t=(a+i/4)"! (12)

for some real a.

The cross section of the point scatterer is defined in the
usual way as the ratio of outgoing power to incident flux.
It is given in terms of the transition strength ¢ by

o=|t|*/40 . (13)

The maximum possible cross section of an isotropic point
scatterer is therefore obtained at a=0, where
o=4/0=2\/m.

If the same scatterer is placed in a finite system and an
isotropic point source is placed at position s#b, the re-
sulting field G (r,s) will have apparent sources at points b
and s only

G (1,8)=G,(r,s)+Gy(r,b) A(b,s) , (14)

where A is as yet an undetermined quantity. The first
term of (14) is regular for r near b. Because it is a solu-
tion of the wave equation it is therefore, in the vicinity of
b, equal to a constant times the Bessel function J,. Add-
ing and subtracting a Hankel function, Eq. (14) then be-
comes, for points r near b,

G(1,8)|,—y=G(b,s)Jo(w|r—b])
—(i/4)H{ (0|r—b|) A(b,s)
+{Gy(r,b)+(i /4)H" (w|r—Db])}
X A (b,s) . (15)

Inasmuch as the response G, consists of a direct part [Eq.
(4)] and a reverberant part consisting of all wall
reflections, it may be recognized that the expression in
curly brackets is the reverberant part only and is (as long
as w is not a natural frequency of the bare system in
which case G is undefined everywhere) regular at r=b.
As it is also a solution of the wave equation, it is, for
r~b, equal to a constant times J,(w|r—b|). We define
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that purely reverberant part of G as f:

f(b)=lin},{Go(r,b)+(i/4)H§,”(co|r—bl)} , (16)

which leads to a description of the field in the vicinity of

the scatterer as the sum of an incident and a scattered

part (recall that J,=1 at r=0b)

G (1,8)|,~,=[Go(b,s)+ f(b) 4 (b,s) 1y (w|r—b])
+(—i/4)H (0|r—b|) 4 (b,s) . (17)

The ratio of the coefficients of these parts is, by

definition, the scatterer strength ¢. So
t=A(b,s)/[Gy(b,s)+f(b)A(b,s)] . (18)

But ¢ is independent of the scatterer and source positions
J

tf(b)=1,
a+i/4=f(b)=1inll,{Go(r,b)+(i/4)H(‘)”(wlr-—b|)]

=i/4+1ir111’[G0(r,b)-—( 1/27)[y + In(|r—blw/2)]} ,

or
a=g(b,w)

=rlint1){Go(r,b)—(1/21r)[y+ In(|r—blw/2)]} , (23)
where (23) defines the function g (b) and y is Euler’s con-
stant y=0.5772157.... Equation (23) is presumably
equivalent to Seba’s [12] Eq. (8) and to Shigehara’s [15]
Eq. (14). This formulation, however, has the virtue of be-
ing a description in terms of a scattering parameter a
directly related to scattering cross section and lacking
any divergent modal sums. The relationship between
these three formulations is discussed further below, fol-
lowing Eq. (30).

IV. EVALUATION
OF THE CHARACTERISTIC EQUATION

G, is given by its modal decomposition, Eq. (3). The
characteristic equation (23), however, is not readily evalu-
ated by means of the direct modal decomposition

Go(r,0)= I ¢, (1), (b)/[(0+1e)*—02,] (24)

because that sum is slowly convergent and indeed diver-
gent at r=b. The explicit logarithm in (23) cancels that
divergence, so in the indicated limit the expression is reg-
ular. Nevertheless, numerical evaluation of the limit

could be awkward. In order to accelerate the conver-
J

g(b,0)=lim | 3 ¢,,(1)$,,()/[A*+0}, ]

+ 3 ¢ ()8, (b)/[0*—w?, 1—(1/27) In(w/A)— (image source contributions)
nm

3345

b and s. This requires that A(b,s)=7(b)G,(b,s) for
some function 7(b).

We conclude that the total field is given everywhere in
the finite domain (except exactly at the scatterer and

source positions) by
G (1,8)=G\(r1,8)+Gy(r,b)r(b)Gy(b,s) , (19)

where the function 7(b) is the scattering operator as
modified by the reflections from the walls
7(b)=t/[1—f(b)] . (20)

Resonance requires w such that ¢f(b)=1. [One can
show that such w are not equal to any of the w,,, of the
bare rectangle unless ¢,,,(b)=0.] Thus the characteris-
tic equation for the finite system with scatterer is

21

(22)

[

gence it is useful to consider a related problem, defined
on the same rectangular domain without scatterer used to
define G,. We consider the problem

(—V2+A2)¥=8%r—b), ¥=0 on boundary , (25)

which represents the problem of the static displacement
of a tensioned rectangular membrane on an elastic foun-
dation. The solution may be represented by a modal
decomposition ’

V= ¢,.(1)¢,,(b)/[A’+ax?,]. (26)

The solution may also be represented as a sum of a direct
contribution, equal to the solution to (25) in an unbound-
ed domain, and the contributions from image sources

v=(1/2m)Ky(|lr—b|A)

+ (image source contributions) . 27)
As r— b, this becomes
V=(—1/27)[y+ In(|[r—b|A/2)
+(image source contributions) . (28)

By equating the two expressions for W(r=b) [(26) and
(28)] one may derive an expression for y +In(|r—b|A /2)
in terms of a modal sum (26) and an image source sum.
This in turn may be used in (23) together with the modal
sum representation (24) for G,. The result is

(29)
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If we choose A=w, combine the two modal sums in (29),
and then take the limit, we find

g(b,0)=20" 3 ¢%,(b)/[0*—0r,

n,m

= 3 Simgsen( 172K o (Irs—blw) , (30)
IS

where the second sum is over all positions rig of the im-
age sources and &pg,, is the sign of the source. This
modal summation now converges, as does the image
source sum.

A comparison of the present equations (23) and (30)
with Shigehara’s [15] Eq. (14) allows one to contrast the
present formulation in terms of a scatterer characteriza-
tion parameter « [related to cross section by Egs. (12) and
(13)] and Shigehara’s parameter vz . The result is

vp '=a+ T Simgen(172m)K (|15 —blw)
IS
=3 Poum (BN 1/(@*+ @} ) —@h /(1 05)]

At high frequencies the image source sum may be
neglected. It nevertheless appears that the difference be-
tween a and vy ' depends on scatterer position and, loga-
rithmically, on o itself. Thus vy is related to cross sec-
tion, but in a complicated way. Except for these
differences it appears that the formulations are otherwise
equivalent.

A similar contrast can presumably be drawn after a
comparison of Seba’s [12] Eq. (8) with the present Egs.
(23) and (30). This would allow one to identify the cross
section of Seba’s scatterer in terms of the parameter a
used to characterize it there. This comparison, however,
J
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does not appear to be simple.

The modal series expression (30) for g converges some-
what slowly. It may be further accelerated by consider-
ing another problem

(VH+AHYWY=8%r—b) , (31)

with conditions on the boundary of the rectangular
domain ¥=0 and 32¥=0, where 0, is a normal deriva-
tive. This problem represents the static response, to a
concentrated point force, of a simply supported Euler-
Bernoulli plate on an elastic foundation. It has a solution
that may be represented by a modal decomposition

U= ¢, (1), (b)/[A*+0p, ] . (32)

n,m

It may also be represented in terms of the solution one
would have in an infinite domain, by adding a correction
in the form of a sum over image source contributions

V=(—4/87A2)k(A|r—b])

+ 3 (—4/87AY)S mgeenk (Irs—bIA) (33)
IS

where k is the Kelvin function of the second kind.

Therefore at r=b and A=w, one finds [because
k(0)=—m/4]

S 42, (b)20%/[A*+ o,

n,m

=%_(1/7T)zsimgsgnkdrls—blw) * (34)
IS

We add this to the previous expression for g to obtain

g=3 $3n(0)40*/[0* — @}, 1= 3 +(1/2m) 3 3 [Ko(Rw)—2k(Rw)]r—(anL, +2b,,2mL,
n,m N M

+(1/2m) 3, E[KO(R&’)_zk(Rw)]R=[2NL J2ML +2b )
N M x ¥y ¥y

_(1/2#)2 Z[KO(RCO)_ZIdRa))]R:{ZNL +2b_,2ML_+2b }
N M oy

~(172m) 3 3 [Ko(R0)—2k(Ro)|r=(anL, 2L, ) »

N M

where the image source sum and its signs have now been
made explicit and the sums over N and M run from — o
to + . The prime on the last sum indicates that the
term N =M =0 is to be excluded. It is this expression
that will be used in the next section to evaluate the
characteristic equation g =a.

V. SCATTERER AT THE CENTER:
NUMERICAL RESULTS

We consider the special case, extensively studied by
Seba and co-workers [12,13] and Shigehara [15], in which
the scatterer is placed exactly at the center of the rectan-
gle: b,=L,/2,b,=L,/2. In this case all #2,,(b) vanish
unless #n and m are both odd, corresponding to the even-

(35)

[

even parity class, for which case ¢2,,(b)=4/L,L,. Only
the even-even parity modes of the bare rectangle are
affected by the scatterer. All the other modes of the bare
rectangle vanish at the position of the scatterer and are
therefore unaffected. It is only the even-even modes that
are studied in the remainder of this paper.

All poles in the sum (35) have residues with the same
sign. A plot of g (@) therefore will be a simple succession
of simple poles. (We presume the generic case in which
the sides of the rectangle are incommensurate and there
are no degeneracies in the bare rectangle). Between each
pole g runs monotonically from « to —o. A typical
plot of g(w) is shown in Fig. 1. The contributions from
the image sums are finite (and indeed are very small if oL
is large and the scatterer is not near an edge). They are
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furthermore slowly varying in w. Thus the roots g=«
must interleave with the poles of g. This is readily seen in
the plot. Seba used this observation to establish that the
roots must exhibit level repulsion. The same feature,
however, also establishes that the system cannot have
much spectral rigidity; the long-range spectral correla-
tions must be approximately identical to those of the bare
rectangle, i.e., essentially Poissonian. The feature also al-
lows for a simple procedure for exhaustive root search-
J

g~ '[4/L,L,140°/[0®— 0}, ]=1+(image source

n,m
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ing. One need merely find the single root that must exist
between each pair of known successive resonances of the
bare rectangle, given by Eq. (2).

In practice the sums over n and m cannot be taken to
infinity; they must be truncated. This is done by drop-
ping all terms with ,, >Q, where Q is taken to be
significantly greater than the largest w of interest. The
remainder of the sum is approximated by an integral over
all k in the first quadrant of k space such that |k| > Q,

sum)+2co6/1rf d*k /[0 —Kk?] (36)
k| >Q

~3'[4/L.L, J40®/[0®— w8, 1— 1+ (image source sum)—(1/37)(w/Q)°

n,m

+[higher-order terms in (0/Q)],

where the prime on the sum over n and m indicates that
terms with o,,, > ) are to be omitted.

The error incurred with these truncations and approxi-
mations is of the order of (w/Q)". If Q>>w then the er-
ror is negligible. The error is in any case a smooth, slow-
ly varying function of w. As such it could be absorbed
into a frequency-dependent a. It is thus unimportant in
evaluating eigenvalue statistics; it will only affect the
secularities in the spectrum. These secularities are in any
case removed before the statistics are evaluated. In prac-
tice we find that () is easily taken sufficiently great that
the error is negligible.

The sum over image sources is also small and weakly
varying. The nearest image sources are at a distance of
the order of L. The k(wL) terms give the larger contri-
butions to g, of the order of exp(—Lw/V'2). This is
much less than unity if L is large, so the image source
sum is also safely ignored, at least at high frequency.

We calculated all even-even roots of the characteristic
equation that lay between w,,;,=60 and ®,, =100 in ten
different rectangles, with sizes L =,
Ly=1r(l.01)"/[(\/§—l)], where p was an integer be-
tween —4 and 5. The parameter a was chosen to be zero.
The parameter ) was taken to be 140 after studies
showed that larger values of ) changed most of the
higher calculated frequencies by much less than 1% of a
mean level spacing. A small number (about 2% of the
levels) were changed by as much as 2% of a mean level
spacing. The lower frequencies were changed even less.
The sum over image sources is even less important, the
effect being to change the calculated resonance frequen-
cies by much much less than 1% of a mean level spacing.
From 1067 to 979 roots were found in each rectangle, de-
pending on size. Each rectangle was separately desecu-
larized, procedures being described elsewhere [4,16]. The
staircase functions were fit to a quadratic function of fre-
quency by expanding in a series of three Legendre poly-
nomials. The inclusion of cubic and quartic terms had a
negligible effect on the mean square residual. Level spac-
ing histograms and number variances were constructed
for each rectangle and combined. Because of the large
number (10213) of levels found, it was possible to calcu-

(37)

[

late accurate values for conditional level density also. All
these statistics are presented below.

Figure 2 shows the histogram of nearest-neighbor level
spacings. It conforms closely to the Wigner distribution
and so confirms Seba’s conclusion that the system has
some GOE character. We note, however, significant de-
viations from the Wigner distribution, especially at the
larger ranges. In the range from 3 to 3.1, for example, 24
level spacings were observed, while the Wigner distribu-
tion predicts that only 3.3 will occur in a sample of
10203 spacings. The error in the observation is presum-
ably one part in V'24. This error is much less than the
observed difference between observation and the Wigner
distribution. Neighboring bins have similar character.
One concludes that the Wigner distribution (and thus the
GOE) does not correctly describe the level spacing distri-

g(b,0)
o

T u - T T T T r T
90.40 9042 90.44 9046 9048 9050 9052 9054 9056 9058 90.60
frequency o

FIG. 1. A short range of the function g(b,®) is shown for
the case L, =, L, =/ (v/5—1) with b chosen at the center of
the rectangle. Arrows indicate the positions of the poles of g,
the resonances of the bare rectangle. The roots of the dressed
rectangle occur at the places where g =a.
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FIG. 2. Level spacing histogram for a total of 10213 even-
even modes of ten rectangles, each with an isotropic point
scatterer at its center. The Wigner distribution and the Poisson
distribution are plotted for comparison.

bution. Seba’s [12] Fig. 1 shows similar deviations be-
tween the Wigner distribution and the observed level
spacing histogram, though the deviation is not discussed
there. The deviation appears more severe in Seba’s work;
this is perhaps attributable to a smaller cross section in
the scatterer used there.

Long-range correlations are better studied by means of
the number variance. In Fig. 3 we plot the number vari-
ance observed among the 10213 levels observed in the
rectangles with scatterers, as well as the number variance
for the 10223 levels observed in the same frequency
range in the undressed rectangles. The number variance

L 1 4 3
3 + &

observedin ]
rectangles . s
24 without . E;

- °I 0
scatterer = °gE_+ inrectangles

with scatterer

Number Variance

-
'l GOE~__

FIG. 3. Number variance for the dressed and undressed rec-
tangles (20 systems in all, each with about 1000 levels) is com-
pared to the GOE and Poisson predictions.
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predicted by the GOE and by a Poisson process is also
plotted [22]. Again we see that the rectangle with
scatterer has eigenstatistics that correspond to the GOE
over the shorter ranges but not the longer ranges. As an-
ticipated, the number variance at longer ranges has much
of the character of the Poisson process. The decided kink
in the number variance at a range of about 0.7 is especial-
ly intriguing. It is as if the system with the point scatter-
er is trying to be GOE at shorter ranges and then has a
sudden change of heart. This is consistent with the hy-
pothesis advanced in Sec. II. Shigehara [15] shows simi-
lar behavior in plots of the Aj; statistic in his systems; a
comparison of the observed correlation ranges with the
cross sections of Shigehara’s scatterers might be of in-
terest.

The number variance 32 may be expressed in terms of
the conditional number density by means of a convolu-
tion. 3?2 at range 7 is therefore perhaps not the best mea-
sure of spectral correlations at range r. A better quantity
for evaluating the exact degree of spectral correlations
over a spectral range r may be the conditional number
density, given for the GOE by

pla,0")=p[1—Y,(plo—aw'})], (38)

where Y, is Dyson’s two-level cluster function [3] and the
mean level density p is unity in normalized units. By
evaluating the conditional density of levels in the desecu-
larized spectra one may construct an observed p(w,w’)
and compare it with the above expression. One may fur-
thermore construct standard error estimates for the cal-
culated observed p(w,’). These are given in Fig. 4.

The observed conditional level density is very nearly
unity for all ranges in the undressed rectangles. In the
dressed systems, however, it shows significant short-range
order. Over ranges less than or equal to » =1 the ob-
served conditional level density nearly agrees with the
GOE prediction. Over very long ranges it goes to unity
as it must. At intermediate ranges it shows a most re-
markable deviation from GOE by overshooting the value
unity. We do not venture an explanation for this
overshoot, but do emphasize that, as predicted by the hy-
pothesis in Sec. II, the GOE character of the condition
level density fails for longer ranges.

VI. CONCLUSIONS

It has been argued that GOE-like spectral correlations
in a billiard will extend over a spectral range correspond-
ing to the inverse of the time that a ray requires to ex-
plore all of phase space. For this reason systems with ray
chaos, which rapidly explore phase space, have well
developed GOE statistics. By the same token, pseudoin-
tegrable systems for which the rays may ergodically fill
phase space, albeit perhaps not very rapidly, will show
spectral correlations over shorter ranges. This, it is as-
serted, is the reason certain pseudointegrable systems
studied in recent years have had GOE statistics.

Towards a confirmation of the hypothesis and in order
to avoid issues of frequency scale (i.e., the ratio of wave-
length to scatterer size), a system consisting of a rectangle
with a single isotropic point scatterer at its center was in-
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FIG. 4. Conditional number densities as ob-
served among the ten dressed and ten un-
dressed rectangles. The prediction of the GOE
(solid bold line) is shown for comparison.
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vestigated. In accordance with the hypothesis, it was
found that the system shows GOE spectra correlations
out to a range of the order of unity.

The hypothesis has further implications that have not
yet been explored. The prediction states that the nondi-
mensional range over which GOE statistics should apply
is of the order of, and proportional to, the ratio of the
diffuse scattering cross section to the wavelength. This
number is 2 /7 for the system studied here. The predic-
tion is thus essentially corroborated for only one value of
this parameter. One cannot increase the scattering cross
section of a single isotropic point scatterer beyond that

chosen here, but one could consider a system consisting
of a number of such scatterers. It is predicted that the
GOE character of the eigenstatistics of such a system
should be maintained out to a range of the order of the
number of scatterers in the system. An investigation of
this prediction is planned to be the subject of a future pa-
per.
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